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Summary
A subset AR model has been considered along with seasonal

multiplicative model for forecasting a particular seasonal series. The
forecasting performance of both models are compared. For estimating
parameters of the models working procedure of Marquardt's algorithm
has been outlined for easy computer coding. The amplitudes of the
Fourier frequencies within period.s of seasonal variation are obtained and
interpreted. Subset AR model for seasonal series is suggested when the
task of identifying a multiplicative model for such series is not easy.

Key words: Subject AR models: Multiplicative AFUMA models;
Seasonal index; Marquadrt's algorithm; AIC.

Introduction

An attempt is made to forecast monthly quantity arrivals of a
particular cotton variety in Flaichur district of a major cotton
producer state Kamatal^ in India. Variations of quantity arrivals
in market can be expected to follow a periodic pattern with period
s, less than or equal to twelve months, a' usual procedure to model
such seasonal variations is to employ a multiplicative ARIMA model
proposed by Box & Jenkins [1]. In such a modelling a series is fitted
in two ways: first observations between periods are linked with an
ARIMA (P,D,Q) model and then observations within periods are
linked vwth another ARIMA (p, d, q). Then on combining these two
ARIMA models the seasonal multiplicative model of order (p,d,q) x
(P,D,Q) is obtained. On the other hand "the general linear model

Zt = ^ Ttj Zt_j + at
J=i

with suitable values for the coefficients nj is entirely adequate to
describe many seasonal series" (Box & Jenkins [1], pp. 301-302). A
sensible way of such a nonparsimonious representation is possible
when condition of invertibility is, imposed. This means that the
contribution of the remote history of the process beyond some time
t-p (p > 0) becomes negligible to its current time (t) output. Thus the
model reduces to the usual Autoregressive (AR) form. Considering
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t±ie fact that the techniques of identification and parameter
estimation ofAutoregressive model are simpler and straight forward
compared to the multiplicative model one would desire to fit ^
Autoregressive model to such a seasonal series. However, such a
model, in particular when fitted to a seasonal series is expected to
involve a large number of parameters and as such loses its
usefulness. To circumvent this problem Akaike's Information
Criterion, AIC is used to make the model a p£U"simonious one.

An attempt is made here to forecast with both t^es of models
the quantity of cotton arrivals in the market based on monthly data
collected over a period of six years. A comprehensive study of the
series is carried out with the multiplicative model. It is also shown
how a parsimonious (or subset) AR model can be obtained using
AIC. Finally, the forecast performances of the two models are
compared.

2. The Multiplicative Model

An ARIMA (p, d, q) model has a difference equaition representation
(Boxand Jenkins, [1]

(Pp (B) Z, = (B) at (2.1)

where is the time series, (at) is the white noise process, and (Pp(B)
and (Pq(B) are polynomials of degree p and q respectively in B, the
backward shift operator. When (pq(B) =0 and d = 0, equation (2.1)
reduces to an AR(P) model.

In analysing a seasonal series we link observations Zt, Zt-a, Zt-2s.
... by an ARIMA (P, D, Qjg model which is of the form

(Pp(B«)V° Zt = GgCB^) at (2.2)

where <Pp (B^) and 0q (B^) are polynomials of order P and Q
respectively in B°. The cq which is the residual of the above model
would not in general be uncorrelated. The series (at} thus can be
represented by an ARIMA (p, d,,q) model

Vp(B) at = Vq(B) at (2.3)

where a^ is now a white noise process and \|fp(B) and Vq(B) are
polynomials of order p and q respectively In B. Combining the
models (2.2) and (2.3) one can fmaUy obtain the multiplicative model

\|;p(B) (pp(B=) V° Zt = 0q (B") Vq(B) at (2.4)
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3. Identification and Parameter Estimation

I. The multiplicative model:

To identify the period or periods"associated with the seasonals,
employ the technique of periodogram analysis (Bloomfield [2]). Plot
the intensities I(fi), corresponding to Fourier frequencies fi= i/N, i= 1,
2 [N/2], N being the number of observations. The plot exhibits
distinct peaks at those frequencies fi, which correspond to periods
of the series. The intensities I(fi) corresponding to frequencies fi for
any given series of N observations of ( Zt, t = 1, 2, . . ., N) may be
obtained by using the expression:

l(f,) = ? (af + bf)

where a, = ^ Cos (2tc fi t) ; i= 1, 2,
N

t=l

and bi = X Zt Sin {2n fi t) : i = 1, 2 N/2
N

t=i

(3.1)

N/2

After identifying the seasonal components, inspect the pattern of
autocorrelation function of the series to identify P, Q, p and q of
equation (2.4). In this identification procedure, characteristic
patterns for autoregressive operators of some frequendy
encountered seasonal models fitted to series can be consulted in
Box and Jenkins [1] (pp. 329-333).

II. The AR(P) model:

In identifying the model of the form (2.1) with q = 0, first carry
out differencing operation of the series with respect to the period s
to make it deseasonal. When stationarlty is achieved with
appropriate dlfiferencing, inspect the partial autocorrelation
function of the differenced series to get a clue of the full order of the
model. The highest lag for which the partial autocorrelation is
significant is tentatively taken as the order (p) of the model. For
seasonal series with period s=12 the most likely value for p is 12.
The value of p is tentative because the parsimonious ARform of the
seasonal series must not contain all terms up to lag p and often only
a subset of few elements of the set of lags (1,2 p) is required
to specify the model. The best model is then selected from the
possible subsets S using AlC as follows. For the model



SEASONAL FORECASTING: A CASE STUDY 147

Zt = X Zt-r + at. Sc(l,2 p), Zt = Zt-Z
r e S

the AIC is defined as

a?
2 ^
t-i

(3.2)

where C(S) is the cardinality ofS and n is the number ofobservations
used. The subset S corresponding to which the AIC is least is chosen
as the best model. Call such a model as best subset ARmodel for a
seasonal series. The search for the best model need not proceed
throughall the 2^^® subsets ofS, and some iterative technique may
be adopted to save computation time.

Now describe the parameter estimation procedure ofthe models.
This procedure is essentially same for both the models except for
the appropriate expression of at.

Ausual procedure in obtaining the values of the parameters of
the model (2.4) is to calculate the sum of a?, where
at = (B®) Vq^ (B) Vp (B) (pp(B®) V° 1^7^, for different sets of
values of parameters in the admissible region of parameter space.
The values of the parameters for which ^ a? is minimum give the
least square estimates (LSE) of the parameters. Since at's are
independent Gaussian, the LSEs are asymptotically MLEs.
However, an efficient search technique to obtain the optimum
parameterestimates isbyusingMarquardfs algorithm (Marquardt,
[5]). This procedure, adopted for estimating the parameters ofboth
the models, is mentioned here, in brief.

It is a combination of the Gauss-Newton iterative scheme and the
method of steepest descent. The sum of squares of error (SS of at)
is a function of the parameters of the model and this function is
expressed in a Taylor's series form near an initial value of the
parameter. The first derivative of SS witii respect to each of the
parameter is evaluated.Using these values, the direction ofsteepest
descent and the optimum change ofparameter values is calculated
to obtain new values of the parameter. Then the SS for the new
values of parameters is calculated and compared with old SS. If
there is a significant reduction in SS then the new values of the
parameters is taken as the initial values and using the same
derivative values of SS, the direction and magnitude of steepest
descent is calculated to get new values of parameters. If instead,
there is an increase in SS then the values of the derivatives are
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The difference equation (4.2) has^a solution of the form

^ a) = bo' m + hT f,(l) +. . .+bp_i fp_i(l) 1> q

149

(4.3)

where 4(1). fjO), . . . fp_i(l) are functions of lead time 1 which in
general could include polynomials, sines and cosines and products
of these functions (Feller, [3] depending on whether the roots of
>l(B) = 0, X(B) being the stationary autoregressive operator, are real
or complex, distinct or repeated. For a given origin t, the coefficients
bj" cire constants applying toall lead times 1; but they change from
one origin to the next, adapting themselves appropriately to the
particular part of the series being considered. The right hand side
of equation (4.3) is known as the eventual forecast function as it
gives us the pattern of long term behaviour of the series.

Now for example if X.(B) is of the form

MB) = (l-B^^)

then the roots of X,(B) = 0 are

(i) I.

and (ii) eleven distinct complex roots
/

B= e'"*''', k=1.2 11.

The complementary function is of the form

Co + Ck(e'""'''), k-1, 2. . . .. 11.

So the eventual forecast function takes the form

12711/12ZtO) = X Ck e'
k=0

1> 12
(4.4)

where Ck, k = 0, 1 11 are twelve adjustable coefBcients.

Letl=12r + m, 0<m<ll

In generals eventual forecast function takes the form
11

ZtG) = r.bi' + 12nkm/12m.A + X Ck e

where A is some constant,

(t) ^ i(t)— r.bi + bo.m 0 < m < 11 (4.5)
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where b" and b|,"„ are called eventual annual trend and monthly
trend respectively. Comparing (4.4) and (4.5) it is noted that
eventual annual trend in this case is zero.

•11

.12itkm/12Thus Zt(m) = X Cke
k=0

= Dm. (say)

m = 0, 1, 2 11

(4.6)

Equation (4.6) reflects and fact that {Dm} is the discrete inverse
Fourier transform of (Ck). and (Ck) is the discrete Fourier transform
of {Dm), that is,

11

Ck =
12

D—12nkm/12
m C , k=0, 1. 11

m=0

Interpret (Ck) as the amplitude of the k-th Fourier frequency
within theseason. Presence ofsignificant amplitude corresponding
to some k entails intraseasonal periodic component.

5. Model Diagnostic Checks

In order to ensure that the periodic characteristics of the series
has adequately taken into account by multiplicative model,
cumulative perlodogram test is employed.

The cumulative periodogram test :

The periodogram of the residual series (at) as defined earlier is

2 2
/ N

^ at. Cos(2jrfit)

E I(f.)
C(fj) = 1=1

Ns'

N

2 at. Sin(2jtfit)
(5.1)

For a white noise series, E [I (fl] = 2a^ It follows that
j •

(1/N) ^ I(f,) provides an unbiased estimate of the Integrated
1=1

spectrum P(fj) and

(5.2)

is an estimate of P(fj)/CTa where s^ is an estimate of a^. We refer to
C(fj) as the normalized cumulative periodogram. Now if the model
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fitted were adequate, and the parameters known accurately, then
the a '̂s computed from the data would yield a white noise series.
For a white noise series, the plot ofC(fj) against fj would be scattered
about a straight line joining the points (0.0, 0.0) and (0.5, 1.0).
Marked deviations from this straight line would show model
inadequacy. Using kolmogorov-Smimov test to set confidence
limits, the confidence limit boundaries fora given level are a pair of
straight lines parallel to the aforementioned line (Joining (0,0) and
(0.5,1)1 at distances above and below the theoretical line,
where q = (N-2)/2 for Nodd. Ke for different levels ofsignificance e
are listed in the table I (taken from Box &Jenkins, [1]).

Table 1. Values of Ke

e 0.01 0.05 o!io 0.25

Ke 1.63 1.36 1.22 1.02

6. Numerical Results

I. Fitting of the multiplicative model

The cotton series under study was recorded over each month. A
total of 72 number of observation is available with us. For fitting
and estimation procedure we have used first 60 observations and
theremaining 12 observations arekeptfor comparing forecasts (see
Fig. 4,5, &6). Since the data are widelyscattered the logarithmically
transformed series is taken for fitting procediire.

From theplot ofautocorrelation function (see Fig. 1(a)) oforiginal
series (2y we note that at lags 1, 2. 11, 12, 13, 14 and 24
autocorrelations are highlysignificant. This allows to considerthat
the series is stationary and a periodic componentwith respect to
period s = 12 is present. The fact is also corroborated from the
calculated values ofI(fi) ofequation (3.1) (seeFig.2). It maybe noted
here that the ideritification of periodic component of a series does
not necessarily call for using window iinlike in the methodology of
estimating spectrum of a process. Fig. 2 clearly exhibits one
prominent peak corresponding to frequency ^ = 0.083, that is, at
the period 1/fj =12 time tmits. We now obtain the autocorrelation
function for the differenced series Zt (see Fig. 1(b)). Here the
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Significant values are seen at 1, 5and 12. This suggests that moving
average operator v(B) may tentatively be considered as

v(B) = (l-VjB - VaB® -

The multiplicative model can now be considered as

(0,0,12) X(0.1.0),=i2
Thus the identified model for the cotton series takes the form

Zt = Zt_i2 + at - vi ai-i - V2 at-5 - Vs at_i2 (6.1)

Having been identified the model (6.1) wenowestimate the values
of the parameters Vi. V2 and V3. Following analogously the algorithm
(see at the end of this section) we obtained the estimates of the
parameters as

vi = -0.4498. V2 = 0.1719 and V3 = 0.2994
withaa= 1.5536 and AIC = 0.5739.

Now obtain two sets offorecasts made at time origin 60. as given
in table 2 (see also Fig. 4 & Fig. 5) from the model

= Zt_i2 +at+ .4498 at_i - .1719 at_5 - .2994 at_i2 (6.2)

Fig. 4 shows one-step-ahead forecasts and Fig. 5 exhibits forecasts
for a lead time 1= 1. 2. .... 12made at time origin 60in bothcases.
As can be seen from these plots torecas'ts are very close to the
observed values. The mean squared error (MSE) as a measure of
one-step-ahead forecast accuracy is obtained and isgiven in table 2.
II. Fitting of the subset AR model:

From the plot ofpartial autocorrelation function (see Fig. 3) we
note that thefull order ofthemodel isp=12. Now using AIC as given
in equation (3.2), obtain the best subset model for the cotton series
as given by

Wt = .313 Wt_i + .233 Wt_6 + .226 Wt_io - .355 Wt_i2 -F at
(6.3)

where Wt = V'""

The value of AIC = 0.0374 and Oa = 0.8655

Fig. 6 exhibits one-step-ahead forecast values obtained at time
origin 60 from the model (6.3).Table 2 gives the comparative forecast
performance of both the models.
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Now employ equation (5.2) to check the adequacy of the model
1 2 90

(6.2). Corresponding to the values of fj = ®

obtained and are plotted in Fig. 7. The two thick boundary lines in
Fig. 7 are Kolmogorov-Smimow 95% confidence limit boundaries.
Since no points have crossed the limit boundaries, the residuals af's
are in fact white noise series.

Seasonal index:

Finally, to detect the presence of intraseasonal periodicity,
calculate the value of (Ck) using equation (4.6). It may be noted that
equation (4.6) gives the seasonal index corresponding to each
month. An inverse Fourier transform of equation (4.6) gives the
values of {Ckl. The plot of |Ck) (see Fig. 8) against k = 0,1,2 11,
exhibits no prominent peak forany k and hence there exists no other
intraseasonal periodicity which has not been accounted for.

Table 2. Forecasts comparison

1 Time t observed

values

Forecasts by seasonal iJodel Forecast by AR
model

(one-step)one-step for 1 time unit

61 9.07 8.31 8.31 8.06

62 7.85 7.50 7.16 7.24

63 7.99 7.14 6.98 7.32

64 7.47 6.47 6.09 6.66

65 8.59 9.03 8.57 8.77

66 . 11.27 9.47 9.79 10.07

67 11.63 10.80 10.05 10.63

68 11.26 10.52 10.30 11.63

69 11.89 10.81 10.65 11.21

70 11.98 11.73 11.17 12.17

71 11.76 10.56 ; 10.75 11.34

72 11.04 10.74 10.35 11.02

MSE 0.907 - 0.696
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Algorithm

Objective: To obtain the final estimates of parameters by
Marquardt's Algorithm

Input: N Length of the series

Z(N) Array containing the series

k- Number of parameters

(k) - Array containing the initial estimates of
parameters. Initial estimates may be obtained
by some general method (see Box & Jenkins,
1976)

Output: (p(k) ^ Array containing final estimates of parameters

OSS —> Estimated sum of squares of error

Temporary variables:

(pN(k) ^Array to store modified values of parameters

NSS Value of error SS corresponding to (pN(k)
T(k,K) -)Matrlx to store products of derivatives of SS

with respect to the parameters
A(N), AN(N) -4Arrays to store eiror terms for (p(K) and

(pN(k) respectively

G (k), D(k) -^Arrays for solving the increment of
parameter value

H(k) ^ Array to store optimum increment in parameter
values at each iteration

X(k,N) ^Matrix to store derivatives of A(N) with respect
to (p(k)

it Iteration number

Del, eps, PI ^Small constants between 0 and 1

F2 Constant between 1 and 2

Steps : 0 : (initialise) it = 0;

I : Calculate error SS corresponding to 9(k) as
k-

OSS =X A' (t). where A(t) =Z(t) - ^ (p(l)Z(t-S,)
t^i 1-1

II : (calctilation of the derivatives)
1 = 1:
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Ila : _ f(pa) • if) ^ 1
" {(pO) +Del ifj =1

lib :
AN(t) =Z(t)- ^ (pN(i)Z(t-Sj), t = 1, 2 N

J-i

11c: X(l,t) = (A(t)-AN(t)), t= 1,2 N

lid: l = l+l;if(l<k)gotoIla

III : (form matrix T, array G and scaling factors D)
N

T(i,j) =X X(i,t).X(j,t), i-1, 2 k, J=l. 2 k;
t-1

N

G(i) =Xx(i,t).A(t)i=l, 2 k;

D(i) = V^, i=l,2 k;
IV : (modify matrix T and array G)

«« =§!•
rVa: T(i.i)= 1 + Pl. i= 1.2 k
V : Solve the set of linear simultaneous equations

T.H = G

for H

VI : (scale back H to get optimum increments)

VII : (get new parameter values)
(pN(l) - (pCD + HG), 1=1,2, ...,k

VIII : Calctilate the new error SS as
N

NSS =X (t).
b-1

k

where AN(t) = Z(t) - £ (pN(l) Z(t-S,)
1=1

IX : If (NSS < OSS) go to X
PI - PI + F2; it = it + 1; go to IVa

x: If(lH(l)l <eps, 1=1,2 k) go to XI

Pl=||: (p(l) =(pN(l).
1=1, 2, . . .,k; it = it + 1; goto 1
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XI : Stop, {(pd), 1= 1, 2,
parameter values)

Conclusion :

k are the optimum

Results of Kolmogorov-Smlrriov test to the residuals of
the series as weU as the absence of intraseasonal
periodicity have revealed that the model (6.2) is
adequate. On the otherhand. from table 2 we note that
for the concerned case the subset AR model (6.3) gives
better forecasts. In order to obtain a generalconclusion
whichofthe two competing models shouldbeemployed
for seasonal series, it is further investigated the
suitability of a subset AR model to the well known series
G (International Airline Passengers) of Box & Jenkins
11]. In this case the best subset AR model is obtained
with only two parameters as given by

Xt = - 0.357 Xt_i - 0.415 Xt_i2 + at
where Xt = V Zt.

The value of AIC = -6.400 (a^= 1.61 x 10^) as obtained
for this model is slightly larger than the value of AIC =
-6.580 (a^= 1.34 x 10"®) for the well known (0.1,1) X
(0.1.1)i2 model. NeveilJieless the subset AR model is no
way inferior to the multiplicative ARIMA model as can
beseenwhen forecasts aregenerated from anyarbitrary
origin. Since the identification procedure of subset AR
model is simple we suggest the use of such models when
there arises complicacy in the identification of
multiplicative ARIMA models. If subset AR modes are
used for seasonal series one can then go for tractable
nonlinear models like Volterra type models (see Sarkar
and Kartikeyan, [6] and Kartikeyan and Sarkar, [4] for
highly accurate forecasts.
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I I I I I

CORRELATION PLOT OF Zt AT LAG K

FIG.- 1(a)

CORRELATION PLOT OF DELTA (12) Zt AT LAG K

FIG.- 1 (b)
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11111 I I •rrrn-1 i 111 1111
fj = 083

PLOT OF PERIODOGRAM

FIG.-2

f=H^

,

PARTIAL CORRELATION PLOT OF DELTA (12) Zt AT LAG K

FIG.-3
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•4- 4- -+• + +
60

COTTON SERIES AND ONE - STEP - AHEAD
FORECASTS MADE AT TIME ORIGIN 60

FIG.-A

60

COTTON SERIES AND FORECASTS MADE

AT TIME ORIGIN 50 FOR LEAD TIMES 1-12

FIG.- 5
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SERIES OBSERVATIONS AND
ONE-STEP-AHEAD FORECASTS

FIG. - 6

- Forecast

Observed

NORMALISED CUMULATIVE PERIODOGRAM

FIG. -7
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H 1 I I- =F= 1—- I I
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PLOT OF {Ck} Vs k
FIG." 6
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